Molecular dynamics simulations of CO2 formation in interstellar ices.
نویسندگان
چکیده
CO2 ice is one of the most abundant components in ice-coated interstellar ices besides H2O and CO, but the most favorable path to CO2 ice is still unclear. Molecular dynamics calculations on the ultraviolet photodissociation of different kinds of CO-H2O ice systems have been performed at 10 K in order to demonstrate that the reaction between CO and an OH molecule resulting from H2O photodissociation through the first excited state is a possible route to form CO2 ice. However, our calculations, which take into account different ice surface models, suggest that there is another product with a higher formation probability ((3.00 ± 0.07) × 10(-2)), which is the HOCO complex, whereas the formation of CO2 has a probability of only (3.6 ± 0.7) × 10(-4). The initial location of the CO is key to obtain reaction and form CO2: the CO needs to be located deep into the ice. The HOCO complex becomes trapped in the cold ice surface in the trans-HOCO minimum because it quickly loses its internal energy to the surrounding ice, preventing further reaction to H + CO2. Several laboratory experiments have been carried out recently, and they confirm that CO2 can also be formed through other, different routes. Here we compare our theoretical results with the data available from experiments studying the formation of CO2 through a similar pathway as ours, even though the initial conditions were not exactly the same. Our results also show that the HCO van der Waals complex can be formed through the interaction of CO with the H atom that is formed as a product of H2O photodissociation. Thus, the reaction of the H atom photofragment following H2O photodissociation with CO can be a possible route to form HCO ice.
منابع مشابه
Infrared spectroscopy of interstellar apolar ice analogs
Apolar ices have been observed in several regions in dense clouds and are likely dominated by molecules such as CO, CO2 and the infrared inactive molecules O2 and N2. Interstellar solid CO has been well characterized by ground-based high resolution measurements. Recent ISO results showed the ubiquitous presence of abundant CO2 ice and the presence of CO2-rich ice mantles towards several molecul...
متن کاملDiffusion of atomic oxygen relevant to water formation in amorphous interstellar ices.
Molecular dynamics (MD) simulations together with accurate physics-based force fields are employed to determine the mobility of atomic oxygen in amorphous ice at low temperatures, characteristic for conditions in interstellar ices. From the simulations it is found that the mobility of atomic oxygen ranges from 60 to 480 angstroms2 ns(-1) in amorphous ice at temperatures between 50 and 200 K. He...
متن کاملFormation of Interstellar Ices behind Shock Waves
We have used a coupled dynamical and chemical model to examine the chemical changes induced by the passage of an interstellar shock in well shielded regions. Using this model we demonstrate that the formation of H2O in a shock will be followed in the post–shock phase by depletion of the water molecules onto the grain surfaces. To attempt to discriminate between the creation of ices behind shock...
متن کاملEvolution of interstellar ices.
Infrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Ices in molecular clouds are dominated by the very simple molecules H2O, CH3OH, NH3, CO, CO2, and probably H2CO and H2. More complex species including nitriles, ketones, and esters are also present, but at lower concentrations....
متن کاملTHz time-domain spectroscopy of mixed CO2-CH3OH interstellar ice analogs.
The icy mantles of interstellar dust grains are the birthplaces of the primordial prebiotic molecular inventory that may eventually seed nascent solar systems and the planets and planetesimals that form therein. Here, we present a study of two of the most abundant species in these ices after water: carbon dioxide (CO2) and methanol (CH3OH), using TeraHertz (THz) time-domain spectroscopy and mid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. A
دوره 117 32 شماره
صفحات -
تاریخ انتشار 2013